skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wirth, Christopher L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2026
  2. Anisotropic colloidal particles are regularly found in applications ranging from health to energy. These particles, typically with non-uniform shape or surface chemistry, interact with boundaries in unique ways, offering pathways to complex assemblies and active systems. Work in this field over the past two decades rapidly advanced, with the last five years seeing significant innovation. One common thread joining many studies and applications is that of the presence of boundaries in the form of a nearby wall or neighboring particle. Asymmetry introduced by a neighboring boundary often leads to unique and surprising particle dynamics from the resulting anisotropic surface interactions. Herein, we provide background for the area, some recent distinctive examples, and describe recent work from our group developing a technique to measure surface interactions of anisotropic particles. Note that we focused on anisotropic “colloidal” particles with the size ranging from 0.1 to 10  μm in the presence of externally or internally generated fields. Within this context, we then motivate and describe recent work from our group developing an ultra-microscopy technique called Scattering Morphology Resolved Total Internal Reflection Microscopy. Finally, we finish the perspective article by identifying challenges and providing an outlook for the field. 
    more » « less
  3. null (Ed.)